Gridded Ion Beam Sources

Gridded Ion Sources

- OptiBeam™ self-aligning optics
- Controlled neutralization
- Plasma discharge
- Modular architecture
- Inert, reactive, and organic gases
- Collimated, divergent, and convergent beams

KRI Gridded Products
RFICP40
RFICP100
RFICP140
RFICP200
RFICP300
KDC 10
KDC 40
KDC 75
KDC 100
KDC 160

Ion Beam Assisted Deposition
In-situ Substrate Precleaning
Ion Beam Sputter Deposition
Surface Modification
Ion Beam Etching
Ion Beam Figuring
Surface Polishing & Smoothing
Ion Beam Trimming and Tuning

Mean free path, \(T_{\text{target}} = T_{\text{incident}} \)
\[\lambda = \frac{1}{\sqrt{2} n Q} \]

Mean free path, \(T_{\text{target}} = 0 \)
\[\lambda = \frac{1}{n Q} \]

Distribution of path lengths
\[I = I_0 \exp(-x/\lambda) \]

Debye length
\[\lambda_D = \sqrt{\frac{\epsilon_0 k T_e}{n_e e^2}} \]

Boltzmann equation
\[n_e = n_{e_0} \exp \left(\frac{V_e}{k T_e} \right) \]

Child’s law
\[j = \left(\frac{4 e_0}{9} \right) \sqrt{2 e_0 m (V^3/\lambda^2)} \]

Bohm conductivity \(\perp B \)
\[\sigma_B \approx \frac{e n_e}{16} \]

Temperature-energy equivalence
1 ev = 11,600 K

Mean Maxwellian speed
\[\bar{v} = \sqrt{3kT/e m} \]
The Ion Beam Authority

Kaufman & Robinson offers gridded Ion Beam Products. Our products include broad-beam Gridded Ion Sources and automated power supplies controllers. All designs are straightforward which easily retrofit into existing vacuum systems, or easily integrate into new OEM systems.

Since 1978, Kaufman & Robinson (KRI), Inc. has designed and built broad-beam ion sources for the vacuum processing community including both manufacturers and researchers. The designs of the gridded ion beam products were developed with our world-recognized expertise in plasma physics, ion source design, and power control engineering.

Currently, KRI holds more than 20 active patents in ion beam and plasma technology, including its innovative designs in multi-aperture ion optics technology.

Meeting Your Application Needs

KRI’s knowledge in material applications is captured in our product relevance. Our products are proven process tools which are connected to real results. For example: These products output a stable regulated beam ideally suited for dry plasma etching, surface treatment and thin film growth applications which include:

- Ion Beam Assisted Deposition
- In-situ Substrate Pre-cleaning
- Ion Beam Figuring
- Ion Beam Etching
- Surface Modification
- Ion Beam Sputter Deposition

Gridded Series of Broad Beam Ion Sources

The versatile gridded series of broad beam ion sources are available in different sizes which covers both R&D and high yield production requirements. Large ion beam sources meet critical output performance for uniform coverage over wide process zones. The large ion energy range permits low energy operation to minimize bombardment damage and heat on sensitive substrates while high energy operation enables high rate sputtering processes.

All gridded models feature patented self-aligned ion optics, electron source neutralizer and either a DC or RF discharge chamber. Our gridded products are fit into two categories: Kaufman DC (KDC) Style or RF Inductive Coupled Plasma (RFICP) Style.
Electron Source Neutralizers

The gridded source can be configured with different neutralizers. The available neutralizer options include simple filaments or non-immersed electron sources. These neutralizers allow stable processing on dielectric materials, eliminating charge build-up effects.

All electron sources tightly control the electron emission current whether it is inexpensive filament designs or non-immersed models used for extended run time and low temperature requirements.

- LFN2000 for up to 2 A emission current
- SHC1000 for up to 5 A emission current
- MHC1000 for up to 10 A emission current

OptiBeam™ Ion Optics

Our ion optics assemblies come in a variety of configurations, sizes and outputs. The multi-aperture grids which seat in the ion optics assemblies are made from thermally stable materials such as Molybdenum and Pyrolytic Graphite. The grid sizes range from 1cm to 38cm diameters and they can be fabricated into flat or dished shapes. The ion optics designs can produce beams which diverge, focus or collimate from the ion source. Two grid ion optic assemblies are standard, while three grid ion optic assemblies are employed in specialized applications.

One of the core benefits in our gridded ion beam products is self-aligning ion optics technology. This technology eliminates the traditional grid alignment procedure. Consequently, the result is consistent and precise aperture position which ensures repeatable and optimized beam characteristics.

Product Options

The eH models can be equipped with optional hardware to tailor the product to the customer’s process and installation.

- Mounting Options
 - Extended Mount Vacuum Feedthrough
 - Remote Vacuum Feedthrough
 - Direct Mount Vacuum Feedthrough
- Angular Mounting Bracket
- Mass Flow Controllers
- In-vacuum Cables
- Ion Source Switchbox

Optional Accessories

- Lower MTBM
- Low Voltage Operation
- Installation Flexibility
- Process Optimization
- Long Filament Lifetime
Power Supplies

All KRI power supplies feature advanced primary switched power modules with output control to protect power supply and load. Upgrades from basic configurations to advanced configuration are easily achieved by replacing or adding modules. Depending upon the model, the power supplies deliver either AC, DC or RF signals with output powers ranging from 100 to 2000W.

- **Powers and controls plasma discharge, ion beam and neutralizer parameters**
- **Feedback control stabilizes beam output for precision process control**
- **Short and arc management through protection circuits**
- **Constant and stable ion beam parameter control over complete operating range**
- **Selection of operational modes to fit application**

Nominal Specifications

<table>
<thead>
<tr>
<th>Product</th>
<th>RFICP40</th>
<th>RFICP100</th>
<th>RFICP140</th>
<th>RFICP200</th>
<th>RFICP300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge</td>
<td>RFICP</td>
<td>RFICP</td>
<td>RFICP</td>
<td>RFICP</td>
<td>RFICP</td>
</tr>
<tr>
<td>Ion Beam Current (I_B)*</td>
<td>>100mA</td>
<td>>350mA</td>
<td>>600mA</td>
<td>>800mA</td>
<td>>1500mA</td>
</tr>
<tr>
<td>Ion Beam Energy (V_B)</td>
<td>100-1200V</td>
<td>100-1200V</td>
<td>100-1200V</td>
<td>100-1200V</td>
<td>100-1200V</td>
</tr>
<tr>
<td>Beam Size @ grid</td>
<td>4cm Φ</td>
<td>10cm Φ</td>
<td>14cm Φ</td>
<td>20cm Φ</td>
<td>30cm Φ</td>
</tr>
<tr>
<td>Beam Type</td>
<td>Collimated, Convergent, Divergent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical flow</td>
<td>3-10sccm</td>
<td>5-30sccm</td>
<td>5-30sccm</td>
<td>10-40sccm</td>
<td>15-50sccm</td>
</tr>
<tr>
<td>Gases</td>
<td>Ar, Kr, Xe, (O_2, N_2, H_2), others</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical Pressure</td>
<td><0.5mTorr</td>
<td><0.5mTorr</td>
<td><0.5mTorr</td>
<td><0.5mTorr</td>
<td><0.5mTorr</td>
</tr>
<tr>
<td>Length</td>
<td>5.0’ (12.7cm)</td>
<td>9.25’ (23.5cm)</td>
<td>9.7’ (24.6cm)</td>
<td>11.8’ (30cm)</td>
<td>14’ (35cm)</td>
</tr>
<tr>
<td>Diameter</td>
<td>5.3’ (13.5cm)</td>
<td>7.52’ (19.1cm)</td>
<td>9.7’ (24.6cm)</td>
<td>16.1’ (41cm)</td>
<td>20.9’ (53cm)</td>
</tr>
<tr>
<td>Neutralizer**</td>
<td>LFN 2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>KDC 10</th>
<th>KDC 40</th>
<th>KDC 75</th>
<th>KDC 100</th>
<th>KDC 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge</td>
<td>DC Thermionic</td>
<td>DC Thermionic</td>
<td>DC Thermionic</td>
<td>DC Thermionic</td>
<td>DC Thermionic</td>
</tr>
<tr>
<td>Ion Beam Current (I_B)*</td>
<td>>10mA</td>
<td>>100mA</td>
<td>>250mA</td>
<td>>400mA</td>
<td>>650mA</td>
</tr>
<tr>
<td>Ion Beam Energy (V_B)</td>
<td>100-1200V</td>
<td>100-1200V</td>
<td>100-1200V</td>
<td>100-1200V</td>
<td>100-1200V</td>
</tr>
<tr>
<td>Beam Size @ grid</td>
<td>1cm Φ</td>
<td>4cm Φ</td>
<td>7.5cm Φ</td>
<td>12cm Φ</td>
<td>16cm Φ</td>
</tr>
<tr>
<td>Beam Type</td>
<td>Collimated, Convergent, Divergent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical flow</td>
<td>1-5sccm</td>
<td>2-10sccm</td>
<td>2-15sccm</td>
<td>2-20sccm</td>
<td>2-30sccm</td>
</tr>
<tr>
<td>Gases</td>
<td>Ar, Kr, Xe, (O_2, N_2, H_2), others</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical Pressure</td>
<td><0.5mTorr</td>
<td><0.5mTorr</td>
<td><0.5mTorr</td>
<td><0.5mTorr</td>
<td><0.5mTorr</td>
</tr>
<tr>
<td>Length</td>
<td>4.5’ (11.5cm)</td>
<td>6.75’ (17.1cm)</td>
<td>7.9’ (20.1cm)</td>
<td>9.25’ (23.5cm)</td>
<td>9.92’ (25.2cm)</td>
</tr>
<tr>
<td>Diameter</td>
<td>1.52’ (4cm)</td>
<td>3.5’ (9cm)</td>
<td>5.5’ (14cm)</td>
<td>7.6’ (19.4cm)</td>
<td>91’ (23.2cm)</td>
</tr>
<tr>
<td>Neutralizer**</td>
<td>All Sources offer Immersed Filament</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Can Depend On Ion Optics ** Other Neutralizers are Avalilbe