

Gridded Ion Beam Sources

Mean free path, T_{target} = T_{incident} Debye length

 $\lambda = 1/\sqrt{2} nQ$

Mean free path, $T_{target} = 0$

 $\lambda = 1/nQ$

Distribution of path lengths

 $I = I_o exp(-x/\lambda)$

 $\lambda_D = \sqrt{\varepsilon_o k T_e / n_e e^2}$

Boltzmann equation

 $n_e = n_{eo} exp(V_p / kT_e)$

$$r = (4\varepsilon_0/9)\sqrt{2e/m} (V^{3/2}/x^2)$$

Ion Beam Assisted Deposition

In-situ Substrate Precleaning

Ion Beam Sputter Deposition

Surface Modification

Ion Beam Etching

Ion Beam Figuring

Surface Polishing & Smoothing

Ion Beam Trimming and Tuning

Bohm conductivity $\perp B$

 $\sigma_{\!B}\approx en_e/16$

Temperature-energy equivalence

1 ev = 11,600 K

Mean Maxwellian speed

$$\overline{v} = \sqrt{8kT/\pi m}$$

KRI Gridded Products

RFICP40 RFICP100 RFICP140 RFICP200 RFICP300

KDC 10 KDC 40 KDC 75 KDC 100 KDC 160

KAUFMAN

- Credibility
- Innovative
- Quality

Applications

- Adhesion
- Film Densification
- Chemical Conversion
- Texturing
- Pinhole Free Films
- Ultra Thin Film Precision
- Microstructure Control
- Nanostructured Surface
- Anisotropic Etching

Gridded Beam Sources

- Low Cost
- Industrial
- Remote Plasma
- Directed Beam
- Beam Shaping
- Precision Control
- Ion Current
- Ion Energy

Design Features

- Self-aligned Ion Optics
- Inert & Reactive Gases
- Large Ion Energy Range
- High Ion Current Densities
 Collimated, Divergent and
- Focused Beams

The Ion Beam Authority

Kaufman & Robinson offers gridded Ion Beam Products. Our products include broad-beam Gridded Ion Sources and automated power supplies controllers. All designs are straightforward which easily retrofit into

existing vacuum systems, or easily integrate into new OEM systems.

Since 1978, Kaufman & Robinson (KRI), Inc. has designed and built broad-beam ion sources for the vacuum processing community including both manufacturers and researchers. The designs of the gridded ion beam products were developed with our world-recognized expertise in plasma physics, ion source design, and power control engineering.

Currently, KRI holds more than 20 active patents in ion beam and plasma technology, including its innovative designs in multi-aperture ion optics technology.

Cuited St.	ties Patent := :=	Passe Suster: 4(11),84 Base of Passes: Oct. 10, 198	
Singer Marker (Minescher, Str., 2) Singer Marker (Minescher, Str., 2) Singer Marker (Minescher, 2) Singer (Minesche	erit keine 20 Karte in 20 Karte kein	Salled States Patrat	- New Yor Statistics
			Image:

Meeting Your Application Needs

KRI's knowledge in material applications is captured in our product relevence. Our products are proven process tools which are connected to real results. For example: These products output a stable regulated

beam ideally suited for dry plasma etching, surface treatment and thin film growth applications which include:

- Ion Beam Assisted Deposition
- In-situ Substrate Precleaning
 - Ion Beam Figuring
- Ion Beam Etching
- Surface Modification
 Ion Beam Sputter Deposition
- Ion Beam Spuller Deposition

Gridded Series of Broad Beam Ion Sources

The versatile gridded series of broad beam ion sources are available in different sizes which covers both R&D and high yield production requirements. Large ion beam sources meet critical output performance for uniform coverage over wide process zones. The large ion energy range permits low energy operation to minimize bombardment damage and heat on sensitive substrates while high energy operation enables high rate sputtering processes.

All gridded models feature patented self-aligned ion optices, electron source neutralizer and either a DC or RF discharge chamber. Our gridded products are fit into two catagories: Kaufman DC (KDC) Style or RF Inductive Coupled Plasma (RFICP) Style.

RFICP Discharge Configuration

KDC Discharge Configuration

Electron Source Neutralizers

(outside of beam) Neutralize

mmersed (in beam) ilament Neutraliz

tralizer options include simple filaments or non-immersed electron sources. These neutralizers allow stable processing on dielectric materials, eliminating charge buildup effects.

The gridded source can be configured with different neutralizers. The available neu-

All electron sources tightly control the electron emission current whether it is inexpensive filament designs or non-immersed models used for extended run time and low temperature requirements.

- LFN2000 for up to 2 A emission current
- SHC1000

 - MHC1000
- for up to 5 A emission current

OptiBeam[™] Ion Optics

Electron Source Neutralizers

ION

Our ion optics assemblies come in a variety of configurations, sizes and outputs. The multi-aperture grids which seat in the ion optics assemblies are made from thermally stable materials such as Molybdenum and Pyrolytic Graphite. The grid sizes range from 1cm to 38cm diameters and they can be fabricated into flat or dished shapes. The ion optics designs can produce beams which diverge, focus or collimate from the ion source. Two grid ion optic assemblies are standard, while three grid ion optic assemblies are employed in specialized applications.

One of the core benefits in our gridded ion beam products is self-aligning ion optics technology. This technology eliminates the traditional grid alignment procedure. Consequently, the result is consistent and precise aperture position which ensures repeatable and optimized beam characteristics.

Beam current, Ib.

Product Options

The eH models can be equipped with optional hardware to tailor the product to the customer's process and installation.

- Mounting Options
 - Extended Mount Vacuum Feedthrough **Remote Vacuum Feedthrough**
 - **Direct Mount Vacuum Feedthrough**
- Angular Mounting Bracket

- Mass Flow Controllers
- In-vacuum Cables
- Ion Source Switchbox

KDC 75 w/ O2 Beam

Electron Sources

- Neutralization
- Beam Divergence
- Plasma Stabilization
- Low Energy
- ESD Control
- Dielectric Substrates

Ion Optics

- 1 to 38cm Φ size
- No Alignment Procedure
- Extended Grid Lifetime
- Optimize Divergence
- Minimizes Maintenance
- Maximizes Beam Current
- Reproducible Beam

Optional Accessories

- Lower MTBM
- Low Voltage Operation
- Installation Flexibility
- Process Optimization
- Long Filament Lifetime

Collimated Ar Beam

Features

- Switch Mode
- Digital Control
- Low Stored Energy
- MFC Gas Control
- Single Botton Enable
- Integrated Control
- Remote Interfaces
- Recipe Storage
- RF Automatching

Power Supplies

All KRI power supplies feature advanced primary switched power modules with output control to protect power supply and load. Upgrades from basic configurations to advanced configuration are easily achieved by replacing or adding modules. Depending upon the model, the power supplies deliver either AC, DC or RF signals with output powers ranging from 100 to 2000W.

- Powers and controls plasma discharge, ion beam and neutralizer parameters
 - Feedback control stabilizes beam output for precision process control
- Short and arc management through protection circuits
- Constant and stable ion beam parameter control over complete operating range
- Selection of operational modes to fit application

Auto Controller: Gas Control, Recipe Storage, Operational Modes

Nominal Specifications

Product	RFICP40	RFICP100	RFICP140	RFICP200	RFICP300		
Discharge	RFICP	RFICP	RFICP	RFICP	RFICP		
Ion Beam Current (I _B)*	>100mA	>350mA	>600mA	>800mA	>1500mA		
Ion Beam Energy (V _B)	100-1200V	100-1200V	100-1200V	100-1200V	100-1200V		
Beam Size @ grid	4cm Φ	10cm Φ	14cm Φ	20cm Φ	30cm Ф		
Beam Type	Collimated, Convergent, Divergent						
Typical flow	3-10sccm	5-30sccm	5-30sccm	10-40sccm	15-50sccm		
Gases	Ar, Kr, Xe, O ₂ , N ₂ , H ₂ ,others						
Typical Pressure	<0.5mTorr	<0.5mTorr	<0.5mTorr	<0.5mTorr	<0.5mTorr		
Length	5.0" (12.7cm)	9.25" (23.5cm)	9.7" (24.6cm)	11.8" (30cm)	14" (35cm)		
Diameter	5.3" (13.5cm)	7.52" (19.1cm)	9.7" (24.6cm)	16.1" (41cm)	20.9" (53cm)		
Neutralizer**	LFN 2000						
Product	KDC 10	KDC 40	KDC 75	KDC 100	KDC 160		
Product Discharge	KDC 10 DC Thermionic	KDC 40 DC Thermionic	KDC 75 DC Thermionic	KDC 100 DC Thermionic	KDC 160 DC Thermionic		
Product Discharge Ion Beam Current (I _B)*	KDC 10 DC Thermionic >10mA	KDC 40 DC Thermionic >100mA	KDC 75 DC Thermionic >250mA	KDC 100 DC Thermionic >400mA	KDC 160 DC Thermionic >650mA		
Product Discharge Ion Beam Current $(I_B)^*$ Ion Beam Energy (V_B)	KDC 10 DC Thermionic >10mA 100-1200V	KDC 40 DC Thermionic >100mA 100-1200V	KDC 75 DC Thermionic >250mA 100-1200V	KDC 100 DC Thermionic >400mA 100-1200V	KDC 160 DC Thermionic >650mA 100-1200V		
Product Discharge Ion Beam Current (I _B)* Ion Beam Energy (V _B) Beam Size @ grid	KDC 10 DC Thermionic >10mA 100-1200V 1cm Φ	KDC 40 DC Thermionic >100mA 100-1200V 4cm Φ	KDC 75 DC Thermionic >250mA 100-1200V 7.5cm Φ	KDC 100 DC Thermionic >400mA 100-1200V 12cm Φ	KDC 160 DC Thermionic >650mA 100-1200V 16cm Φ		
Product Discharge Ion Beam Current (I _B)* Ion Beam Energy (V _B) Beam Size @ grid Beam Type	KDC 10 DC Thermionic >10mA 100-1200V 1cm Φ	KDC 40 DC Thermionic >100mA 100-1200V 4cm Φ Collimation	KDC 75 DC Thermionic >250mA 100-1200V 7.5cm Φ ted, Convergent, Div	KDC 100 DC Thermionic >400mA 100-1200V 12cm Φ vergent	KDC 160 DC Thermionic >650mA 100-1200V 16cm Φ		
Product Discharge Ion Beam Current (I _B)* Ion Beam Energy (V _B) Beam Size @ grid Beam Type Typical flow	KDC 10 DC Thermionic >10mA 100-1200V 1cm Φ 1-5sccm	KDC 40 DC Thermionic >100mA 100-1200V 4cm Φ Collimation 2-10sccm	KDC 75 DC Thermionic >250mA 100-1200V 7.5cm Φ ted, Convergent, Dir 2-15sccm	KDC 100 DC Thermionic >400mA 100-1200V 12cm Φ vergent 2-20sccm	KDC 160 DC Thermionic >650mA 100-1200V 16cm Φ 2-30sccm		
Product Discharge Ion Beam Current (I _B)* Ion Beam Energy (V _B) Beam Size @ grid Beam Type Typical flow Gases	KDC 10 DC Thermionic >10mA 100-1200V 1cm Φ 1-5sccm	KDC 40 DC Thermionic >100mA 100-1200V 4cm Φ Collima 2-10sccm Ar, H	KDC 75 DC Thermionic >250mA 100-1200V 7.5cm Φ tted, Convergent, Dir 2-15sccm ⟨r, Xe, O ₂ , N ₂ , H ₂ ,oth	KDC 100 DC Thermionic >400mA 100-1200V 12cm Φ vergent 2-20sccm ers	KDC 160 DC Thermionic >650mA 100-1200V 16cm Φ 2-30sccm		
Product Discharge Ion Beam Current (I _B)* Ion Beam Energy (V _B) Beam Size @ grid Beam Type Typical flow Gases Typical Pressure	KDC 10 DC Thermionic >10mA 100-1200V 1cm Φ	KDC 40 DC Thermionic >100mA 100-1200V 4cm Φ Collimate 2-10sccm Ar, H <0.5mTorr	KDC 75 DC Thermionic >250mA 100-1200V 7.5cm Φ tted, Convergent, Dir 2-15sccm <r, o<sub="" xe,="">2, N₂, H₂, oth <0.5mTorr</r,>	KDC 100 DC Thermionic >400mA 100-1200V 12cm Φ vergent 2-20sccm ers <0.5mTorr	KDC 160 DC Thermionic >650mA 100-1200V 16cm Φ 2-30sccm <0.5mTorr		
Product Discharge Ion Beam Current (I _B)* Ion Beam Energy (V _B) Beam Size @ grid Beam Type Typical flow Gases Typical Pressure Length	KDC 10 DC Thermionic >10mA 100-1200V 1cm Φ	KDC 40 DC Thermionic >100mA 100-1200V 4cm Φ Collimation 2-10sccm Ar, 1 <0.5mTorr	KDC 75 DC Thermionic >250mA 100-1200V 7.5cm Φ tted, Convergent, Dir 2-15sccm <r, o<sub="" xe,="">2, N₂, H₂, oth <0.5mTorr</r,>	KDC 100 DC Thermionic >400mA 100-1200V 12cm Φ vergent 2-20sccm ers <0.5mTorr	KDC 160 DC Thermionic >650mA 100-1200V 16cm Φ 2-30sccm <0.5mTorr		
Product Discharge Ion Beam Current (I _B)* Ion Beam Energy (V _B) Beam Size @ grid Beam Type Typical flow Gases Typical Pressure Length Diameter	KDC 10 DC Thermionic >10mA 100-1200V 1cm Φ	KDC 40 DC Thermionic >100mA 100-1200V 4cm Φ Collima 2-10sccm Ar, I <0.5mTorr	KDC 75 DC Thermionic >250mA 100-1200V 7.5cm Φ tted, Convergent, Dir 2-15sccm <r, o<sub="" xe,="">2, N₂, H₂, oth <0.5mTorr</r,>	KDC 100 DC Thermionic >400mA 100-1200V 12cm Φ vergent 2-20sccm ers <0.5mTorr	KDC 160 DC Thermionic >650mA 100-1200V 16cm Φ 2-30sccm <0.5mTorr		

* Can Depend On Ion Optics

 Tel:
 +1 (970) 495.0187

 Fax:
 +1 (970) 484.9350

 Email:
 sales@ionsources.com

 Web:
 www.ionsources.com

** Other Neutralizers are Availble

Ion Beam Sources - Standard configurations

- Optimized configurations
- Application specific
- Controlled ion energy
- Controlled current density
- Controlled beam shape